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Abstract: It is theoretically demonstrated that Rabi interband oscillations 
are possible in waveguide arrays. Such transitions can take place in optical 
lattices when the unit-cell is periodically modulated along the propagation 
direction. Under phase-matching conditions, direct power transfer between 
two Floquet-Bloch modes can occur. In the nonlinear domain, periodic 
oscillations between two different lattice solitons are also possible. 
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1. Introduction 

It is a well known fact that when an electron “drops” from the conduction band to the valence 
band, the excess energy is converted into electromagnetic radiation (photons) or into lattice 
vibrations (phonons). This emission can take place spontaneously from zero-point quantum 
fluctuations or it can be induced through stimulated emission. On the other hand, light can 
also be absorbed in crystals, resulting in an electronic transition to a higher energy state 
(conduction band). What actually facilitates this process is in fact a periodic time perturbation 
added to the electron Hamiltonian due to the presence of an external optical field. In the 
absence of any phonon or defect interactions, such transitions obey selection rules and as a 
result they can only take place if the Bloch momentum is conserved (direct transitions). In 
addition, the energy must also be conserved. Therefore, the period of the harmonic 
perturbation should be equal to the energy difference between the two levels. Rabi oscillations 
in the framework of atom optics have been considered at both the theoretical [1] and 
experimental front [2]. 

In this context it is natural to ask if these same processes can also be observed in the 
optical domain, in particular in waveguide lattices. Already, there have been suggestions of 

observing such transitions in photonic crystal systems using either )2(χ  nonlinear or 
ultrasonic time/space harmonic perturbations [3, 4]. However, thus far such all-optical 
transitions have never been observed experimentally.  

In this paper, we show that optical Rabi inter-band transitions and nonlinear power 
exchange between two different gap solitons are possible in periodically modulated array 
structures (inset of Fig.1) [5, 6]. These transitions can occur among bands or gaps in the Bloch 
momentum k-space, as shown in Fig.1. Note that the normalized value of the propagation 
constant in Fig. 1 can be either positive or negative, when compared to the propagation 
constant of the background refractive index of the periodic potential.    

 

 
Fig. 1. Allowed all-optical direct transition between the first and third band. The inset depicts a 
top view of a periodically modulated optical lattice. 
 

The array is modulated in the propagation direction z with a period Λ, in such a way that the 
“energy difference” 2π Λ spans the “energy/eigenvector”-difference between the allowed 
bands. This of course occurs provided that the transition selection rules are respected. Fig.1 
shows such a possible direct transition between the first and the third band of this structure. In 
the case shown, this transition is allowed because the Floquet-Bloch (FB) modes involved 
possess the same parity. We note that these transitions occur as a result of parametric mixing 
and thus are different from the recently reported Zener tunneling [7, 8], as well as, from the 
Bragg-resonance induced transitions [9] and spatial four-wave-mixing effects [10]. 
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2. Coupled mode theory of FB mode transitions 

In order to understand the dynamics of inter-band optical transitions we derive the 
corresponding coupled-mode equations. This is done by using time-dependent perturbation 
techniques in the paraxial equation of diffraction. In this case, wave propagation in a 
transversely-periodic potential (unperturbed in z ) is governed by the following normalized 
equation 0 0z xxiU U V U+ + = , where U  represents the optical field, z is the propagation 

distance, x  the transverse coordinate, and ( )0V x  is the periodic index potential with spatial 

period D , ( ) ( )0 0V x V x D= + . The general solution of this problem can be expressed as a 

linear superposition of FB modes ( )k n xφ , where k  denotes the Bloch wave vector and n  the 

band-index number. In general, U  can be expressed as a superposition 

( ) ( ) ( ) ( )
1

, exp
D

n k n n

n D

U x z c k x i k z dk
π

π

φ β
+∞

= −

= ⎡ ⎤⎣ ⎦∑ ∫ , where ( )nc k represent FB mode 

occupancy coefficients and k nβ is the corresponding propagation constant. Thus the 

unperturbed eigenvalue problem is given by ( ) ( )0 0n k n k n k nk V xβ φ φ φ′′− + + = . If on the 

other hand, the lattice is perturbed by a z-dependent periodic potential, then the system obeys:                         

                                              ( )
2

2
, 0

U U
i V x z U

z x

∂ ∂+ + =
∂ ∂

                                                    (1), 

where ( ),V x z  is a lattice potential periodically modulated along the z-direction. The 

perturbed z-dependent potential ( ),V x z  is written as ( ) ( ) ( )0, ,V x z V x V x zε ′= + ⋅ , where 

1ε <<  and ( ),V x z′  is a weak periodic modulation. Note that ( ),V x z′  has the same 

periodicity as the original lattice ( )0V x , e.g. ( ) ( ), ,V x z V x D z′ ′= + . By writing 

( ) ( ) ( ) ( )
1
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n D

U x z c k z x i k z dk
π

π

φ β
+∞

= −

= ⎡ ⎤⎣ ⎦∑ ∫ , where the occupancy coefficients 

( ),nc k z  are now z-dependent, we find   
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π

π
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++∞
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where ( ) ( )*,f g f x g x dx
+∞

−∞

≡ ∫ . Evidently, the coupling strength between FB modes 

depends on the transition matrix element ( ), ,k m k nV x zφ φ′ ′ . Given that both ( )k n xφ  and 

( ),V x z′  have the same period D , the latter inner product can then be reduced to 

( ) ( )*, ,k m k n k m k n

cell

V x z V dx k kφ φ φ φ δ′ ′

⎛ ⎞
′ ′ ′= −⎜ ⎟

⎝ ⎠
∫ . This last result indicates that only direct 

transitions are allowed, i.e., the transverse momentum k must be conserved in order for a 

transition to occur. By using the orthogonality condition ( ),,k m k n n m k kφ φ δ δ′ ′= − we can 

then derive the coupled mode equations describing the dynamics of Rabi-like oscillations. In 
this case, the FB mode occupancy coefficients associated with inter-band direct transitions, 
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satisfy the following equation, ( )
1

exp 0m nm n nm

n

i c A c i zβ
+∞

=

⎡ ⎤+ Δ =⎣ ⎦∑�
, where 

( ) ( )nm n mk kβ β βΔ = −  and ( ) ( ) ( )* ,n m k m k n

cell

A x V x z x dxε φ φ′= ∫  represents the overlap 

integral. By expressing the periodic perturbation in a separable form 

( ) ( ) 2
, cosV x z V x z

π⎛ ⎞′ ′= ⎜ ⎟Λ⎝ ⎠
, and dropping the resulting highly oscillating terms, one can 

derive the coupled mode equations that describe FB mode transitions from band n to band m 
and vice versa. These are: 
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dz

dc
i

zicM
dz

dc
i

nmnnm
m

nmmmn
n

πβ

πβ
                                    (2) 

 where ( )*

2nm km kn

cell

M V x dx
ε φ φ′= ∫ . From Eq. (2) it can be directly shown that the transition 

nm ↔ between two different FB modes is optimum under the phase-matching condition 
2β πΔ = Λ . In this case, complete power transfer will occur at a coupling 

distance ( )2 nmL Mπ= .  

3. Selection rule diagram and examples of FB mode transitions 

As an example, we consider optical transitions in periodically modulated AlGaAs 
semiconductor lattices (waveguide arrays) when 2β πΔ = Λ . More specifically, these 

processes can be realized in systems with periodicity Λ∼0.15mm. This facilitates several 
cycles of oscillation in experimentally-realizable samples that can be 1-3 cm long. The period 
in this array is mD μ8=  and the waveguide width varies periodically 

( )( )0 1 cos 2w w zε π= + Λ⎡ ⎤⎣ ⎦  with mw μ40 =  and 05.0=ε . For this particular design the 

transition strengths 
nmM  can be obtained as a function of the Bloch wave vector, as shown 

in Fig. 2. This figure indicates that in this structure inter-band direct transitions are most 
effective between the second and third band. Forbidden transitions can also be identified at the 
band edges ( )0,k Dπ= ± . We consider two examples of FB mode Rabi oscillations. The 

strongest one is between the second and third band at k Dπ= − . The beam evolution in the 

modulated lattice, when the FB mode 
,2Dπφ−  is excited, is shown in Fig. 3(a). The power 

distribution between the second and third band is also depicted in Fig. 3(b) as a function of 
propagation distance. As we can see, complete power exchange from the second to the third 
band takes place after 1.2 cm of propagation. Before this point, the two involved FB modes 
interfere, leading to secondary power oscillations. A second example of a weak FB mode 
transition is that of 1 3↔ at 0k = . The beam propagation (when the FB mode 0,1φ  is 

excited), as well as the projected power distribution to the two bands, are given in Fig. 4(a), 
(b), respectively. The conversion efficiency is lower and the oscillation period longer (~6cm), 
since this transition is weaker than the previous one, as expected from the selection rule 
diagram of Fig. 2. In both cases the agreement between coupled mode theory and BPM 
simulations is excellent. 
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Fig. 2. Selection rule diagram for direct transitions between the first three bands. 
 

    

Fig. 3. (a) Intensity evolution pattern of a strong direct transition from the second to the third band at 
Bloch wave number k= -π/D, and (b) the corresponding total energy in second (red line) and the third 
(blue line) band, respectively, as a function of propagation distance. The arrow in (a) indicates the location 
where maximum energy exchange occurs. 
  

 

Fig. 4. (a) Intensity evolution pattern of a weak direct transition from the  first to the third band 
at Bloch wave number k=0, and (b) the corresponding total energy in the first (red line) and the 
third (blue line) band, respectively, as a function of propagation distance. The arrow in (a) 
indicates the location where maximum energy exchange occurs.  
 

4. Nonlinear energy exchange in modulated lattices 

Another exciting possibility is to examine whether nonlinear power exchange from gap to gap 
can also occur in such systems. Unlike the cases described above, power exchange between 
self-trapped states is a direct outcome of nonlinearity. This is because lattice solitons reside in 
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the gaps of an otherwise defect-free lattice [5, 6, 11-13]. In essence, this may take place while 
the wave itself maintains its particle nature. In this case, the wave propagation in the z-
modulated periodic potential is governed by the nonlinear Schrödinger equation 

                                          ( )
2

2

2
, 0

U U
i V x z U U U

z x

∂ ∂+ + + =
∂ ∂

                                           (3) 

A numerical simulation predicting such a nonlinear power exchange from the semi-infinite 
gap to the second gap in a periodically modulated semiconductor waveguide array is 
examined. In particular, the beam diffracts under linear conditions, as shown in Fig. 5(a). For 
higher powers and the same excitation, the field self-localizes and forms a lattice soliton with 
propagation eigenvalue in one of the two gaps, (Fig. 5(b)). Here, the eigenvalue difference of 
the two solitons involved is taken to be 2π/Λ. In other words, the process is properly phase-
matched. However, such Rabi oscillations between lattice solitons survive only for a few 
oscillation periods: in every cycle the soliton becomes wider and some power escapes to 
extended states. 
 

 
Fig. 5. (a) Diffraction dynamics in a periodically modulated lattice under wide beam excitation, 
and (b) nonlinear power exchange between a soliton residing at the semi-infinite gap and a 
soliton in the second gap of the corresponding lattice, under the same excitation conditions. 
 

5. Summary 

In conclusion, we have demonstrated theoretically that inter-band FB oscillations are possible 
in waveguide arrays. Such transitions can take place in optical lattices when the channels are 
periodically modulated along the propagation direction. In the nonlinear domain, oscillations 
between two different lattice solitons are also possible. Recent experimental observation of 
such transitions in modulated LiNbO3 waveguide arrays [14] is in complete agreement with 
the presented theoretical results. 
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